背景
草地退化導致水土流失、沙塵暴、草地生產力下降、生物多樣性減少等生態(tài)問題,并影響當地畜牧業(yè)的發(fā)展。因此,對植被進行有效監(jiān)測可以緩解退化持續(xù)加劇的問題。低空無人機遙感平臺結合了空間分辨率和監(jiān)測距離的優(yōu)勢,適合草地退化監(jiān)測。
將傳統(tǒng)機器學習應用于草地退化的研究需要人工提取大量的特征信息,耗時且費力。隨后,學者們將深度學習引入到草地退化指標物種的分類任務中,將特征提取到分類的過程整合起來。然而,構建的模型參數量較大,需要大量的訓練樣本,并且其分類性能有待提高。因此,需要一種高效、高精度、小樣本的草地監(jiān)測模型。
為了獲得草地物種的高分辨率遙感影像,采用無人機高光譜遙感技術對內蒙古葛根塔拉草原植被物種進行了數據采集。提出了一種基于局部-全局特征增強網絡(Local-global feature enhancement network, LGFEN)的荒漠草地物種高精度分類方法。此外,我們使用卷積塊注意模塊(Convolutional block attention module , CBAM)來細化HSI的特征,以進一步增強LGFEN網絡的分類性能。本文利用小樣本數據對荒漠草地物種分類進行了探索,旨在為荒漠草地生態(tài)系統(tǒng)的動態(tài)監(jiān)測提供理論依據。
試驗設計
內蒙古農業(yè)大學杜健民教授團隊利用Gaiasky-Mini-VN高光譜相機(江蘇雙利合譜公司)獲取了研究區(qū)內不同地物品的高光譜影像,其波段范圍為400 ~ 1000 nm,波段數為256。各類地物的光譜曲線如圖1所示。其他地物類型(墊子、小旗和垃圾)的光譜曲線與其余5種地物的光譜曲線差異最大。裸地光譜曲線在550 ~ 740 nm范圍內呈緩慢線性增長,與4種植被的特征差異顯著。580 nm后,短花針茅的光譜曲線與其余3種植被的光譜曲線存在一定差異。閉鎖薊、冷蒿和駝絨藜的光譜曲線相似度較高。在886.6 nm之后,由于噪聲的影響,不同地物的光譜曲線都表現出較大的波動,最終獲得的頻帶數為205個。
本研究中使用了局部特征增強模塊(Local feature enhancement, LFE)(圖2)和全局特征增強模塊(Global feature enhancement, GFE)(圖3)。LFE使用二維卷積來學習HSI的局部特征,并使用殘差結構來增強特征重用。GFE通過FC層學習各子patch之間的相關特征,獲得全局特征信息。CBAM模塊包括通道注意模塊和空間注意模塊,如圖4所示。
LGFEN由3個主要模塊組成:LFE模塊、GFE模塊和CBAM模塊。其結構如圖5所示。在網絡中,主要采用核大小為1 × 1的二維卷積對HSI進行降維,以減少高維數據的冗余信息,經過該卷積層后,數據的通道維數降為64。然后,通過轉置卷積對降維后的數據進行自適應上采樣,以擬合GFE模塊中子patch的采樣過程。隨后,上采樣數據通過LFE和GFE模塊來學習HSI的局部和全局特征。最后,通過CBAM模塊對學習到的特征進行細化,增強網絡性能的穩(wěn)定性。所有特征學習完成后,通過全局平均池化層對空間特征進行聚合,最后通過兩個FC層進行最終分類。
圖1 不同地物的光譜曲線
圖2 LFE結構
圖3 GFE結構
圖4 CBAM結構
圖5 LGFEN網絡架構
結論
為了驗證各模塊的有效性,進行了消融試驗分析。比較了僅使用GFE模塊的網絡、僅使用LFE模塊的網絡、使用GFE + LFE模塊的網絡和最終的LGFEN網絡。如表1所示,同時提取局部和全局特征的網絡的分類性能優(yōu)于局部特征和全局特征分別提取。這表明GFE和LFE聯(lián)合是有效的。在此基礎上,加入CBAM注意力模塊的LGFEN網絡獲得了*佳的分類性能。與未添加CBAM模塊的GFE + LFE網絡相比,OA(整體精度)、AA(平均精度)和K(Kappa系數)分別提高了1.28%、1.37%和1.96%。此外,LGFEN網絡的偏差更低,說明CBAM模塊在最終特征細化中的作用是有效保證網絡分類性能的穩(wěn)定性。
表1 消融試驗結果
為了更好地評估本文提出的LGFEN網絡的有效性,我們選擇了幾種最新的HSI分類方法進行比較,包括CTN、DBDA、DBMA和MAFN。從圖6可以看出,本文提出的LGFEN方法對不同草地物種的分類效果*好,在所有方法中錯分率最低。
如圖8所示。從模型參數來看,LGFEN的參數數量與CTN相似;與DBDA、DBMA和MAFN相比,LGFEN的參數數量較少。從模型預測時間的角度來看,LGFEN消耗的時間成本更低,說明LGFEN在保證分類精度的同時具有更高的計算效率。
圖6 不同方法的混淆矩陣分類結果
表2 不同分類方法的實驗結果
圖7 具有不同數量訓練樣本的OA
圖8 不同分類方法的參數數量和預測時間
為驗證LGFEN在荒漠草原物種識別中的有效性,選取3個樣本進行可視化分析,如圖9所示。從圖中可以明顯看出,其他地面物體和裸地物體被有效識別。通過對比人工野外調查記錄和無人機航拍RGB拼接圖像,3個樣本的分類結果與實際地物的空間分布相匹配,分類性能良好。有效地區(qū)分了不同的地物,較好地保留了地物的空間特征。這表明LGFEN在荒漠草原物種的識別和分類方面具有良好的泛化能力。本研究為荒漠草原退化監(jiān)測提供了一種新的方法,可為今后的研究提供理論參考。
圖9 樣本可視化驗證
作者信息
杜健民,博士,內蒙古農業(yè)大學機電工程學院教授,博士生導師。
主要研究方向:環(huán)境測控技術與裝備智能化。
參考文獻:
Zhang, T., Bi, Y. G., Du, J. M., Zhu, X. B., & Gao, X. C. (2022). Classification of desert grassland species based on a local-global feature enhancement network and UAV hyperspectral remote sensing. Ecological Informatics, 72.
https://doi.org/10.1016/j.ecoinf.2022.101852
地址:無錫市梁溪區(qū)南湖大道飛宏路58-1-108
電話:13810664973
郵箱:info@dualix.com.cn
地址:北京市海淀區(qū)中關村大街19號
電話:13810664973
郵箱:info@dualix.com.cn
地址:陜西省西安市高新區(qū)科技一路40號盛方科技園B座三層東區(qū)
電話:13810664973
郵箱:info@dualix.com.cn
地址:成都市青羊區(qū)順城大街206號四川國際大廈七樓G座
電話:13810664973
郵箱:info@dualix.com.cn